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Cross-waves are standing waves with crests a t  right angles to a wave-maker. 
They generally have half the frequency of the wave-maker and reach a steady 
state at  some finite amplitude. A second-order theory of the modes of oscillation 
of water in a tank with a free surface and wave-makers at  each end leads to 
a form of Mathieu’s equation for the amplitude of the cross-waves, which are 
thus an example of parametric resonance and may be excited at  half the wave- 
maker frequency if this is within a narrow band. The excitation depends on the 
amplitude of the wave-maker at  the surface and the integral over depth of its 
amplitude. Cross-waves may be excited even if the mean free surface is stationary. 
The effects of finite amplitude are that the cross-waves approach a steady state 
such that a given amplitude is achieved at  a frequency greater than that for 
free waves by an amount proportional to the amplitude of the wave-maker. The 
theory agrees reasonably well with the experimental results of Lin & Howard 
(1960). The amplification of the cross-waves may be understood in terms of the 
rate of working of the wave-maker against transverse stresses associated with 
the cross-waves, one located at the surface and the other equal to Miche’s (1944) 
depth-independent second-order pressure. The theory applies to the situation 
where the primary motion consists of standing waves and the cross-waves are 
constant in amplitude away from the wave-maker, but certain generalizations 
may be made to the situation where the primary waves are progressive and the 
cross-waves decay away from the wave-maker. 

1. Introduction 
Faraday (1831 a)  observed that if the edge of a vibrating wooden platet was 

immersed about in. into a basin of water, then “Elevations, waves or crispations 
immediately formed but of a peculiar character. Those passing from the surface 
of the plate over the water to the sides of the basin were hardly sensible, but 
apparently permanent elevations formed, beginning at  the plate and projecting 
directly out from it to the extent of or 4 an inch or more, like the teeth of a very 
short coarse comb” (entry 118 for 1 July 1831). In  an elaboration of this experi- 
ment at a lower frequency, Faraday noted that the waves had a frequency half 
that of the vibration of the plate (entry 140 for 5 July 1831; see also Faraday 
1831b). 

t Faraday caused the vibrations by stroking a wet glass rod, one end of which was held 
against the plate. The experiment is readily reproduced. 
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These waves, with crests at  right angles to the wave-maker and generally 
half the frequency, have come to be known as ‘cross-waves’, and on a larger 
scale appear to be a common phenomenon in wave tanks in which the width of 
the wave-maker is rather larger than the wavelength of the primary waves being 
generated. Schuler (1 933) and Spens (1 956) studied cross-waves in wave tanks 
with beaches a t  the end opposite the wave-maker, in which case the primary 
waves were progressive and the amplitude of the cross-waves decayed away 
from the wave-maker. Lin & Howard (1960) carried out a thorough experimental 
investigation of the cross-waves generated in a tank with a rigid wall opposite 
the wave-maker, in which case the primary motion consisted of standing waves 
and the cross-waves were constant in amplitude away from the wave-maker. 
Lin & Howard were unable to account for the excitation of the cross-waves 
theoretically, though they did develop a theory which seemed to explain why 
the cross-waves should have half the frequency of the wave-maker. 

This paper is directed mainly towards an understanding of the experimental 
results of Lin & Howard (1960), but the solution of this problem leads to a t  least 
a partial theory of the cross-waves generated in the case in which the primary 
waves are progressive, and to a suggestion as to how they might be suppressed. 

One must answer the following questions: 
(i) How can waves with crests at right angles to a wa.ve-ma.ker be generated? 
(ii) Why should such waves have half the frequency of the wave-maker? 
(iii) What determines the amplitude at which cross-waves reach a steady state Z 
The half-frequency property of cross-waves suggests that they may be an ex- 

ample of parametric resonance. Thiswell-known phenomenon (seee.g. Bogoliubov 
& Mitropolsky 1961) refers to the excitation of an oscillator the governing para- 
meters of which are varied with a frequency sufficiently close to 2w/N,  where o 
is the frequency of free oscillation and N is integral. The strongest resonance is for 
N = 1. Mathematically the phenomenon is described in its simplest form by 
Mathieu’s equation. A simple mechanical example of parametric resonance is 
the excitation of a simple pendulum by periodic vertical motion of its point of 
support. This may be understood physically in terms of the work done against 
the centrifugal force exerted by the pendulum. 

An example of parametric resonance in fluid mechanics was described by 
Benjamin & Ursell (1954) who showed that in a vertically oscillating container 
of water the amplitude of a standing surface wave satisfies Mathieu’s equation. 
It is not difficult to show that in this case the excitation of the surface wave may 
be interpreted in terms of the work done against the pressure exerted on the 
bottom of the container by the surface wave. 

In this paper, I start with roughly the same formulation of the problem as 
Lin & Howard (1960) and show that if quadratic terms are retained in the free- 
surface conditions a function related to the amplitude of cross-waves satisfies 
Mathieu’s equation. Mathematically this accounts for the excitation of half- 
frequency cross-waves at certain frequencies of the wave-maker; the excitation 
may be understood physically in terms of the work done by the wave-maker 
against transverse stresses associated with the cross-waves. It is this interpreta- 
tion which suggests how cross-waves may be generated when the primary waves 
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are progressive. It will be shown how cross-waves approach a steady state at 
finite amplitude, as is usual for a parametrically resonant non-linear oscillator; 
the dependence of this amplitude on frequency permits a comparison of the 
theory with the experimental data of Lin & Howard (1960). 

2. Formulation 
A rectangular tank of water has wave-makers at x* = 0 , 2 L ,  rigid sides a t  

y* = 0, W ,  a rigid bottom at z* = - H  and a free surface with undisturbed 
position z* = 0. The experimental tank used by Lin & Howard corresponds to 
one half of this (i.e. due to the symmetry of the problem they had a rigid wall 
at x* = L). The asterisk denotes dimensional variables. 

The flow is assumed to be incompressible, inviscid and irrotational, with a 
velocity potential $*. We non-dimensionalize with respect to a length Lln and 
time (L/gn)t as follows: 

L ’  
nX* ny* 
L ’  y = L ’  z = - -  

x=-- 

and define 

t =  - t * ,  $=(q (-) L +  $*j (Y)h L ng 

The velocityu = V$, where 
V2$ = 0. 

The conditions on the free surface x = c(x, y, t )  are 

+z = Q + 9 J X  + $ll cv, (2 .4)  

$&++[V$l2+< = 0. (2.5) 
The normal velocity vanishes on the fixed sides and bottom of the tank. Thus 

& = 0 on y = 0, nll, 

# , = O  on z = - h .  

The normal velocity is prescribed on the wave-makers, which are displaced to 
x = F ( z )  P(t) and x = 2L - P(z) ,8(t). For small amplitude of the wave-maker 
motion, we may linearize this and apply the boundary conditions 

$ ,= .F (z ) ,~  on X = O ,  +,=-F(z),4 on x =  2n. (2.8) 

The dot superscript describes differentiation with respect to t of a function of 
t alone. 

3. The cross-wave equations 

taken as 
To second order in the amplitude of $, c, the free surface conditions may be 

(3.1) $,+c$, = ct++zcx++vcy:Y, on 2 = 0, 

$t+G$,t+tlV#12+C= 0, on z = 0. (3 .2)  
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We now describe the motion in the tank as the sum of an O(a) primary motion, 
independent of 9 and satisfying the inhomogeneous boundary conditions (2.8), 
plus all the free modes of the tank with some dependence on y, i.e. we write 

a m  

g = Co(x, t )  + X Z c , , ( t )  cosmxcosnly, 
m=O n=l 

(3.3) 

m m  

m=O n=l 
4 = $,(x,t)+ C dE,,,(t)cosmxcosnZyexp{(m2+n2Z2)8z). (3.4) 

We shall concentrate on the fundamental cross-wave (m = 0, n = l), assuming 
co, and do, to be O(E)  and all the other coefficients to be second order in e and a. 
We then substitute (3.3), (3.4) into (3.1), (3.2), average in the x direction, and 
consider the coefficients of cos Zy to second order. Hence 

Zd(l+aZ)+bc = C, 
d(1+aZ)+iic+dZd+c = 0, 

where c = c ~ , ~ ,  d = do,l and 
- __ - 

a = COI~!=O, b = 4ozzlz=oY $oBtt/z=o = a, (3.7) 

the bar denoting the average over x. But clearly the mean free surface displace- 
ment is given by the amount of water displaced by the wave-makers, so that 

Similarly, the mean vertical velocity a t  any level is given by 

(3.9) 

so that b = (l/n)P(O)p. (3.10) 

Eliminating d from (3.5,6) we have 

E-bC+Z(l+ii-6/l)c = 0. (3.11) 

In  the absence of the wave-makers (a  = b = 0) ,  this equation describes free 
oscillations of frequency I*. In  the presence of wave-makers the implications of 
(3.11) are best understood by defining 

f(t) = cexp [ - f b ( ~ ) d ~ ]  = cexp[-&/3P(o)/7r], (3.12) 

whence, retaining only linear and quadratic terms, 

.f+ I (  1 + ii - +b/Z)f = 0, (3.13) 

or $ + I  1 + -  21 F(x)dx-P(O) f =  0. [ L[ I1 (3.14) 

If p = a cos at this becomes Mathieu’s equation, 

f+ I (  1 f y cos &)f = 0, (3.15) 

where y = acT2 - [ P ( 0 ) -  21 /Im F(2) 4. 
217r 

(3.16) 
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Half-frequency cross-waves are parametrically excited for a in the range 

(3.17) 

and the growth rate is O(a) within this band. 
The degree of excitation depends on the amplitude of the wave-maker a t  

z = 0, and the integral of the wave-maker amplitude over the depth of the water. 
It is somewhat surprising that this integral is not weighted with the energy 
density of the cross-waves, this will be discussed further in $6. We note three 
special cases : 

(i) P(0) = 0, i.e. the wave-maker is totally submerged. The excitation then 
depends only on the acceleration of the mean free surface, and the problem re- 
sembles that of Benjamin & Ursell, though in their case the whole tank was 
accelerating. 

(ii) j:m F(z )  dz = 0, an example of such a wave-maker would be a flap pivoting 

about an axis midway between the free surface and the lower edge of the flap. 
In  this case, cross-waves are still excited even though the acceleration of the 
mean free surface is zero. This is an important example as it demonstrates the 
essential difference between cross-waves and the surface standing waves ex- 
amined by Benjamin & Ursell. 

(iii) P(0) - 2ZIm F(z )  dx = 0, so that cross-waves are suppressed (at least to 

this order). 
Although Mathieu’s equation has growing solutions for u close to 214/N, 

where N is an integer other than 1, (3.15) cannot be used to investigate such a 
resonance for cross-waves. The reason is that the growth rate a t  such a resonance 
is O(aN), which might just as easily be produced by neglected terms of O(aMe) 
(provided N / M  is integral) as by the quadratic terms which have been retained. 
For example, for N = 2 the full equation for the amplitude of the cross-wave 
would contain terms with coefficients O(a2)  and frequency 2u. These could give 
a growth rate O(a2),  comparable with that from the coefficient of O(a)  and 
frequency a. Cross-waves can probably be excited for N an integer other than 1, 
but a quantitative study of this would require analysis of the problem to order 
N in a. 

So far only the fundamental cross-wave (n = 1) has been discussed. Higher 
modes may be excited in just the same way, the governing equations would be 
just as before with 1 replaced by nl. More complicated modes corresponding t o  
cm,n and in (3.3), (3.4) with neither m nor n zero are probably also subject to 
parametric resonance, but away from the frequency bands in which this can 
occur G ~ , ~ ,  merely describe small disturbances forced by the primary motion 
and whatever cross-wave, if any, is being excited, and will thus be small com- 
pared with the coefficients describing the cross-wave, as assumed earlier. 

Lin & Howard (1960) derived an equation equivalent to (3.11) for the par- 
ticular case P(z)  = e4z and ,4 = a: cos at, but they then looked for steady solutions 
and found that these were only possible with frequency +cr and if a relation 

0 
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between u2 and 1 was satisfied. They could not account for the excitation of 
cross-waves, though we see now that their approach is equivalent to demanding 
that (T should be at  one end of the frequency band within which half-frequency 
parametric resonance occurs. 

The analysis leading to (3.17) is easily modified for finite depth h, though the 
algebra is more tedious. The end result is that half-frequency cross-waves are 
excited for IT in the range, 

(Itanh Zh)* { 2 + -:[ - P(0) - 7tanh2zh-31S0 2tanhZh --h P(r)dz]) .  (3.18) 

4. Finite-amplitude effects 
If we were to take into account third-order terms in the free surface conditions 

and terms arising from a proper expansion of the boundary conditions on the 
wave-makers (rather than the linearized (2.8)), then the equation governing the 
amplitude of the fundamental cross-wave would contain extra terms of O($) 
and O(sa2) (nothing of O(e2a) or O(a3) would appear). The term of O(ea2) would 

'\ 
\ 
\ 

Frequency (L) 

FTCIJRE 1. Frequency-amplitude curve of a non-dissipative parametrically resonant non- 
linear oscillator. Arrows indicate the direction in which the frequcncy is changing. 

alter the width of the parametric resonance by a fraction of O(a), which we 
neglect, and also alter the basic frequency of the cross-wave by O(a2). The term 
of O(e3) would also alter the frequency of the cross-wave by O(e2) ,  indeed this is 
just saying that the frequency of a free standing wave in a tank is amplitude- 
dependent. This is crucial, for it means that instead of growing indefinitely, if CT 
is within the frequency band for resonance, the cross-wave will approach a steady 
state a t  some finite amplitude. The theory of a parametrically resonant non- 
linear oscillator is well known (e.g. Bogoliubov & Mitropolsky 1961, 9 17), but 
the relevant points will be summarized briefly here. 

Suppose that the oscillator has a natural frequency o ( e )  which is a decreasing 
function of its amplitude B (as for cross-waves), as shown by the broken line in 
figure 1. Suppose further that half-frequency parametric resonance occurs for (T 
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within t- 8, of twice the frequency of the free oscillator. If cr is now decreased 
slowly from some value greater than 2w(0)+6, then the instability of the 
oscillator will first appear, with frequency icr, when cr = 2 4 0 )  + 8,. If we con- 
tinue to decrease cr by a small amount at a time, a t  each stage the oscillator will 
have frequency $cr and will grow in amplitude until W ( E )  = i c r -  48,. Thus the 
frequency-amplitude curve of the oscillator will lie a distance 48, to the right 
of the curve for free oscillations. If cr increases slowly from a value less than 
2 4 0 )  - am, the oscillator will not respond until ?p reaches w ( 0 )  - &Y,, a t  which 
frequency the frequency-amplitude curve will jump to that for decreasing. 
This response of the oscillator to parametric resonance is sketched in figure 1. 
In  practice dissipative and higher-order non-linear effects generally affect the 
oscillator for large E (see Bogoliubov & Mitropolsky for the effect that this has 
on figure 1). 

5. Comparison with experiment 
The results of $9 3,4 enable us to give a precise description of the implications 

of the theory for the experiments of Lin & Howard (1960). In these experiments 
they used just one wave-maker and a rigid wall at x = 71, but by symmetry the 
present theory applies. The wave-maker extended to the bottom of the tank and 
was of the flap type, i.e. P(z) = -z/h (so that a is the amplitude of the wave- 
maker at  z = 0) .  The tank was sufficiently deep for tanh Zh to be very close to 1. 
Thus the parametric excitation of the fundamental cross-wave is described by 

j E + z  1+-(I-Zh)coscrt f =  0, [ :  1 
and half-frequency cross-waves are amplified for 

The wave growth would be limited by finite-amplitude effects, as discussed 
in $4. If the cross-waves are investigated by slowly decreasing the wave-maker 
frequency (as seems to have been the case in the experiments of Lin & Howard), 
allowing time for a steady state to be reached at each stage and then measuring 
the amplitude and frequency of the cross-waves (if present), then their frequency 
should be half that of the wave-maker (as was observed), and the frequency- 
amplitude curve should be to the right of that for free oscillations by a frequency 
&arn given by 

aZ4 
2n $8, = - \l-ZhI. (5.3) 

Qualitatively this is in agreement with the experimental results of Lin & 
Howard. They obtained frequency-amplitude data which were generally to the 
right of the curves for free oscillations (obtainable from the theory of Penney & 
Price 1952) by an amount which increased as the amplitude of the wave-maker 
increased. 
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In  Lin & Howard's experiment W = 24&in., H = 24in., so that 

+(rm/l4 = 0.341a. (5.4) 

+ ~ ? ~ / l * ,  i.e. the frequency shift for a given cross-wave amplitude, may be measured 
approximately from the data of Lin & Howard and plotted against a. In  figure 2 
the vertical lines join the greatest and least values of @'m/E4 for a given value of a. 

I 0 0 2  0.04 
U 

FIGURE 2. Frequency shift of frequency-amplitude curves of Lin & Howard (1960) versus 
wave-maker amplitude a. The straight line through the origin represents (5.4), thenumbered 
vertical lines give the spread of the data for a run of that number. Runs 11 1, 11 2, 113 were 
for 1 = 0.289, runs 114, 115, 116 for I = 0.362 and runs 117, 118, 119, 120 for I = 0.560. 

No values of +(rm/l4 have been measured for runs in which 41 was integral, as in 
these cases the data were more scattered and the frequency amplitude curves 
were not the same in shape as the curves for free oscillation. This was probably 
because the primary standing wave was then very large due to resonance, and 
third-order terms in the cross-wave equation were important, even though 
formally O(ea2).? The straight line in figure 2 represents (5.4). 

We see that for each value of 1 the slope of the data is consistent with (5.4), 
but the origin is not. Thus the data suggests that the theory adequately describes 

t It is clear that a steady state is reached at  B = O(a&), so that the cross-waves are 
generally larger than the O ( a )  primary waves, and third-order terms O(@) are larger than 
0 (€a2) terms. 
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the strength of the parametric resonance, but that the frequency of free cross- 
waves was overestimated by an amount independent of a, and less than + %. 

Viscous effects would cause a decrease in S,, though in a tank of the size used 
by Lin & Howard this should be negligible. 

Further evidence for our interpretation of the cross-wave as a parametrically 
excited non-linear oscillator comes from the phase relation between the wave- 
maker and cross-wave. Here 1 - IF ,  < 0, and when a steady cross-wave is set 
up it is such that (T is at  the upper end of the frequency band in which resonance 
occurs. Thus if the wave-maker displacement inwards is proportional to cos at, f, 
and hence c, is proportional to sin (see the appendix). Thus, when the wave- 
maker is fully in, the surface displacement due to the cross-wave is zero, and, 
when the wave-maker is out, the free surface displacement due to the cross-wave 
is at  a maximum or minimum. This agrees with the observations of Lin &Howard. 
Indeed, the accuracy with which it is true emphasises the unimportance of 
viscosity. For in the presence of slight damping like e-@ the cross-wave response 
a t  the end of the resonance band would be sin (Sat + 6') where 6' = p/S,  (see the 
appendix). 0 was too small to  measure in Lin & Howard's experiments, so that 
dissipative effects were indeed negligible. 

6. Energy considerations 
In 5 3 we saw that the cross-waves are coupled to the primary motion through 

the non-linear free surface conditions and actually depend on the spatial mean 
of the position of the free surface and the vertical strain there. However, this 
does not really tell us how energy is being fed into the cross-waves. Clearly the 
energy of the cross-waves must be derived either from the primary motion or 
directly from the wave-makers. I shall now show that the latter is the case and 
explain how it occurs. 

Before the cross-waves are set up the primary motion is O(a) with energy 
O(a2). It is clear from the analysis of 3 3 that when cross waves of O(E) and energy 
O(e2) are established, the primary motion is affected only to second order, thus 
the change in its energy is third order, insufficient to supply the energy of the 
cross-waves. Thus the cross-wave energy must be derived directly from the 
wave-makers. 

An energy equation for the cross-waves may be derived by multiplying (3.1 1) 
by (n2/Z2) C. After some manipulation we have 

0 7T 
= - - P(0) D C C  + f P(2) dz/9(C2 + CC). (6. I )  

12 I - w  

The left-hand side of this equation describes the rate of change of the cross-wave 
energy within the volume 0 < x < 277,O < y 6 n/Z, - co < z. The energy is made 
up of the kinetic and potential energy of the cross-wave plus a third-order (and 
hence negligible) interaction term involving the velocity of the wave-maker. The 
right-hand side may be interpreted as the rate of working of each wave-maker 
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against a stress - &r/12c% at the surface, and a stress &(n/Z) (9 + cc) uniformly 
distributed with depth. 

At first sight this is surprising. One expects the wave-makers to be working 
against the second-order pressure associated with the cross-waves, but this 

pressure involves a term proportional to euz so that a term / F ( z )  eazdz would 

appear on the right-hand side of (6.1). Such a term does not appear because 
(6.1) refers to the rate of change of cross-wave energy within the rectangular 
box 0 6 x 6 2n, 0 < y < n/l, -a < x ,  rather than the energy between the wave- 
makers. The latter will certainly change at  a rate given by the rate of working 
of the wave-makers against the pressure on them, but if we wish to consider the 
rate of change of energy in the rectangular box then we must consider the flux 
of energy across the boundaries as well as the rate of working against the pressure, 
and these contributions to some extent cancel. 

0 

-m 

Indeed, if E denotes the energy within the box, then 

whence, using the free surface conditions (2.4), (2.5), 

= -2/;’zdYsz --m d z r P ( 4  $tJz=0l, (6.4) 

by symmetry and using (2.8). Thus the growth of the cross-waves within the box 
is due to the rate of working of the wave-makers against a stress - q5t. Equation 
(6.4) may be written (to third order) as 

in which we take the values of [, $t appropriate to a free cross-wave. The first 
term gives a contribution - (n/12) F ( 0 ) l c c  to dE/dt .  The second term contributes 
(to third order) only from the second-order term in $t independent of y. This 
may be obtained from (3.2) as -+(ce+C2), which is the unattenuated second- 
order pressure discovered by Miche (1944) and explained physically by Longuet- 
Higgins & Ursell(l948) as due to the raising and lowering of the centre of gravity 
in a standing wave. When used in (6.5) it  gives a contribution 

n / q o  P(z)dz/9(C2+ca), 
-m 

so that (6.5) agrees with (6.1). We note that for half-frequency cross-waves the 
second-order terms in c have the same frequency as p, so that the time-average 
of the right-hand side of (6.1) is indeed non-zero if the phase between the wave- 
maker and cross-waves is right. 
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7. Discussion 
The theory described in this paper seems to provide a convincing explanation 

of the phenomenon of cross-waves in a closed tank with a wave-maker at one 
end. The theory agrees with the experiments of Lin & Howard (1960) in the 
following details: 

(i) The frequency of the cross-waves is half that of the wave-maker, as observed. 
(Cross-waves at other multiples of the half-frequency are probably possible, 
though they would be much more difficult to excite.) 

(ii) The frequency-amplitude curves of the cross-waves should lie to the right 
of the curves for free standing waves by an amount proportional to the amplitude 
of the wave-maker. The experimental results bear this out qualitatively, and are 
consistent quantitatively if one assumes the calculated frequency of free oscilla- 
tions to be in error by a small amount independent of the wave-maker amplitude. 

(iii) The phase relation between the wave-maker and cross-waves is as expected. 
Viewed as a non-linear interaction, the cross-wave may be regarded as two 

progressive waves, of the form cos (Zy - ot) and cos (Zy + wt) ,  each interacting 
with the basic frequency 2w to reinforce the other. 

It should be emphasized that cross-waves are a transverse instability in- 
dependent of the primary motion. Probably the best way to understand their 
generation is in terms of the work done by the wave-maker against transverse 
stresses associated with the cross-waves, as discussed in $6. It seems highly 
plausible that the same mechanism operates when the primary motion consists 
of progressive waves and the cross-waves are observed to decay away from the 
wave-maker. In  (3.17) the amount of excitation possible is described by 

I I 

which may be written dimensionally as 

Presumably for progressive primary waves we must replace L here by the scale 
length of the distance to which the cross-waves extend, but the other factors are 
unaltered. Thus cross-waves may be eliminated if we choose P(z*) such that 

P(0) = - P(z")dz* 

The distance to which cross-waves extend is unknown, but is probably deter- 
mined by dissipative effects, in which case the resonance half-width will be 
decreased and cross-waves eliminated even if (7.1) is not quite satisfied. Of course 
cross-waves are only possible if the wave-maker frequency is sufficiently close to 
twice the natural frequency of a cross-wave with a half-integral number of wave- 
lengths across the tank. 

If Lp is the wavelength of the progressive waves being generated then (for 
deep water) W in (7.1) may be replaced by 2Lp. If the wave-maker is of the flap 
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type with depth H then (7.1) gives I = nH/2LP,  so that cross-waves are eliminated 
if H is chosen equal to 2LP/n. For a plunger wave-maker with a vertical stroke 
the displacement is given by G[z+P(t)], but if the stroke is small this is approxi- 
mately G’ (z )P ( t ) ,  and the above theory applies with F(z )  = G’(z). In  particular, 
if the plunger is a triangular wedge of depth H ,  (7.1) implies the elimination of 
cross-waves if H = Lp/v.  

This is somewhat speculative; further theoretical and experimental work is 
required for a full understanding of the cross-wave phenomenon when the wave 
tank does not have a rigid reflecting wall opposite the wave-maker. 

Cross-waves of the form cos nly cos (mz - wt)  are probably not possible as the 
radiative damping would exceed the rate of excitation. 

Another possible example of parametric resonance in a wave tank was observed 
by Bowen & Inman (1969). They found that surface waves incident on a shelving 
beach generated standing edge waves which were generally of the same frequency 
as the incident waves, though they did occasionally observe half-frequency edge 
waves which grew slowly to a very large amplitude. Edge waves have a frequency 
depending on the slope of the beach, so that half-frequency edge waves could 
perhaps be excited parametrically by harmonic variation of the slope of the free 
surface due to the incoming waves. Edge waves of the same frequency as the 
incident waves (which, unlike the half-frequency waves, were also observed in 
the field by Bowen & Inman) are presumably generated by some more com- 
licated mechanism, but as Bowen & Inman suggest the phenomenon may be 
related to that of cross-waves. 

In  conclusion, it is rather intriguing that a box of water with a flapping side 
should show the behaviour of resonant non-linear oscillators in one direction 
(the primary standing waves, see Taylor 1953) and parametrically resonant non- 
linear oscillators in the other direction. 

I am most grateful to Professor M. S. Longuet-Higgins for bringing the cross- 
wave problem to my attention, providing copies of the unpublished reports by 
Spens (1956) and Lin & Howard (1960) and for commenting on the first version 
of the paper. It is also a pleasure to thank Dr T. B. Benjamin for detailed com- 
ments and particularly for suggesting a more concise derivation of (3.5), (3.6) 
than that originally used. The bulk of the work was done, and the original 
version of the paper written, a t  the Institute of Oceanography of the University of 
British Columbia, with support from the National Research Council of Canada. 
The revision was supported by the National Science Foundation. 

Appendix. Simple properties of Mathieu’s equation 
Mathieu’s equation may be written 

i i+w~( l+ycosa t )u  = 0, (A 1) 

which describes the motion of a simple harmonic oscillator in the situation where 
some external parameter defining its frequency varies sinusoidally in time. If y 
is small it is well known (e.g. Bogoliubov & Mitropolsky 1961, $17) that for (r 
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within O(yNwo) of 2w0/N solutions exist of frequency ~ N ( T  growing like est where 
s is also O(yNwo). 

Some standard results for N = 1 are summarized here for convenient reference. 
If (T = 2w0 + 6, an approximate solution, 

has 2A+(S+4ywO)B = 0, 
u = A( t ) cos (w+~S) t+B( t ) s in (w+&$) t ,  (A 2) 

2B-(S-$yw0)A = 0, 

8 2  = f[(+ywo)2 - P I ,  
so that A ,  B are proportional to est where 

and grow or decay exponentially if - S, < S < S,, where 

s, = 1 2YWO. (A 6 )  
Note that B = 0 when S = $yoo and A = 0 when 6 = -gywo. 

If we include in (A 1) a small frictional term 2pu, which would damp free 
oscillations like e - d ,  then A ,  B grow or decay exponentially for - S, < 6 < S,, 
where 

The presence of dissipation also alters the phase relation at  6 = i: SnL. Taking 
y < 0 and S = +S, (to tie in with $5),  

8, = [ ( ~ Y W ~ ) ~  - 4p2]6. (A 7 )  

so that for p small A + (p/S,) B and the steady solution at 6 = S, is now propor- 
tional to sin (gat +pL/S,) rather than sin &t. 
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